翻訳と辞書
Words near each other
・ Dictyotrypeta
・ Dictys
・ Dictys Cretensis
・ Dictée/Liber Novus
・ Dicuil
・ Diculești
・ Dicus
・ Dicy
・ Dicy, West Virginia
・ Dicya
・ Dicyanamide
・ Dicyanoacetylene
・ Dicycla
・ Dicycla oo
・ Dicycle
Dicyclic group
・ Dicyclodes
・ Dicyclohexylamine
・ Dicyclohexylurea
・ Dicyclopentadiene
・ Dicycloplatin
・ Dicycloverine
・ Dicyema shimantoense
・ Dicyemida
・ Dicyemidae
・ Dicymbe
・ Dicymolomia
・ Dicymolomia diminutalis
・ Dicymolomia grisea
・ Dicymolomia julianalis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dicyclic group : ウィキペディア英語版
Dicyclic group

In group theory, a dicyclic group (notation Dic''n'' or Q''4n'') is a member of a class of non-abelian groups of order 4''n'' (''n'' > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2''n'', giving the name ''di-cyclic''. In the notation of exact sequences of groups, this extension can be expressed as:
:1 \to C_ \to \mbox_n \to C_2 \to 1. \,
More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.
==Definition==

For each integer ''n'' > 1, the dicyclic group Dic''n'' can be defined as the subgroup of the unit quaternions generated by
:\begin a & = e^ = \cos\frac + i\sin\frac \\
x & = j
\end

More abstractly, one can define the dicyclic group Dic''n'' as any group having the presentation
:\mbox_n = \langle a,x \mid a^ = 1,\ x^2 = a^n,\ x^ax = a^\rangle.\,\!
Some things to note which follow from this definition:
* ''x''4 = 1
* ''x''2''a''''k'' = ''a''''k''+''n'' = ''a''''k''''x''2
* if ''j'' = ±1, then ''x''''j''''a''''k'' = ''a''−''k''''x''''j''.
* ''a''''k''''x''−1 = ''a''''k''−''n''''a''''n''''x''−1 = ''a''''k''−''n''''x''2''x''−1 = ''a''''k''−''n''''x''.
Thus, every element of Dic''n'' can be uniquely written as ''a''''k''''x''''j'', where 0 ≤ ''k'' < 2''n'' and ''j'' = 0 or 1. The multiplication rules are given by
*a^k a^m = a^
*a^k a^m x = a^x
*a^k x a^m = a^x
*a^k x a^m x = a^
It follows that Dic''n'' has order 4''n''.〔
When ''n'' = 2, the dicyclic group is isomorphic to the quaternion group ''Q''. More generally, when ''n'' is a power of 2, the dicyclic group is isomorphic to the generalized quaternion group.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dicyclic group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.